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Storage capacity of correlated perceptrons
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We consider an ensemble ofK single-layer perceptrons exposed to random inputs and investigate the
conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations
between the outputs occur. A general formalism is introduced using a multiperceptron cost function that allows
one to determine the maximal number of random inputs as a function of the desired values of the correlations.
Replica-symmetric results forK52 andK53 are compared with properties of two-layer networks of tree-
structure and fixed Boolean function between hidden units and output. The results show which correlations in
the hidden layer of multilayer neural networks are crucial for the value of the storage capacity.
@S1063-651X~97!12605-8#
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I. INTRODUCTION

One of the central tasks in the field of statistical mech
ics of neural networks is a deeper understanding of the
formation processing abilities of multilayer feed-forwa
networks ~MLN ! @1,2#. After a thorough analysis of the
single-layer perceptron it soon became clear that the v
properties that entail the larger computational power of M
also make their theoretical description within the framewo
of statistical mechanics much harder. Even the simplest c
with just one hidden layer containing many fewer units th
the input layer and with a prewired Boolean function fro
the hidden layer to the output has proven to be rather c
plicated to analyze exactly@3–6#. It is therefore important to
develop useful and reliable approximate methods to st
these practically important systems. For the characteriza
of the generalization abilityboundsfor the performance pa
rameters have been shown to yield useful orientations@7,8#.
For the storage capacity, i.e., the typical maximal numbe
random input-output mappings that can be implemented
the network, only rather crude bounds exist so far, and th
are independent of the hidden-to-output mapping@9#.

Let us start the discussion with a number of general o
questions regarding the capacity of MLN. These questio
although only partially answered in the present work, m
serve as a call for further investigation by the community
the statistical mechanics of neural networks.

A. Correlations among the hidden units

The increased computational power of MLN stems fro
the possibility that the different subperceptrons between
put and hidden layer can all operate in the region bey
their storage capacity. The typically occurring errors of t
regime can be compensated by other subperceptrons. H
ever, this ‘‘division of labor’’ only works appropriately if the
errors do not occur for all subperceptrons inthe samepat-
terns. Hence, intricate correlations depending on the hidd
to-output mapping develop in the hidden layer when
number of input-output pairs increases@10#. This qualitative
551063-651X/97/55~6!/7369~10!/$10.00
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picture has already been used to propose and analyze a l
ing algorithm for a special MLN, the parity machine@11#. It
has been observed for some time that the organization
internal representations described by these correlation
crucial for the understanding of the storage and general
tion abilities of MLN @3,12–15#.

The approximation suggested in this work is to repla
‘‘division of labor’’ by an ‘‘average division of labor.’’An
approximate treatment of a MLN becomes possible if o
does not require a definite mapping from the hidden laye
the output but instead prescribes the values for the corr
tions, i.e., theaveragerelation between the hidden units an
the output and also among the different hidden units the
selves. The task is then to determine how many random
puts can be implemented by a set ofK perceptrons, such tha
the outputs show definite correlations.

B. Interplay between correlations and the capacity

This approach will highlight which type of correlation i
easy to implement and which is difficult, i.e., reduce t
storage capacity significantly. It is already known that
creasing the average correlation between each one of
hidden units and the desired output decreases the capa
This result can be exemplified by the following well-know
limits. The lowest capacity is achieved for hidden uni
which are fully correlated with the desired outputs. In th
case there is no division of labor and the MLN shrinks to
simple perceptron. The other limit is the parity machine,
which the correlation between each hidden unit and the o
put is zero. In this case the upper bound for the capacity
MLN with one hidden layer is achieved. Nevertheless,
general framework of how the capacity depends on the c
relations between the output and apartial setof the hidden
units is still unknown. The main problem is that with increa
ing K there is a tradeoff between a more flexible division
labor and an increasing complexity of possible correlatio
@16,17#.
7369 © 1997 The American Physical Society
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C. Possible scaling for the capacity

Of particular interest is the limit of an infinite numberK
of hidden units for which only few analytical results a
known. For the AND machine the capacity is ofO~1! @12#,
whereas for the committee machine and the parity mach
the capacity is of order (lnK)d, with d51/2 @15# and 1 @4#,
respectively. These results may suggest one of the follow
two possible scenarios: in the first scenario, the capacity
ies continuously as a function of the hidden-output corre
tions. Anyd in the range 0<d<1 can be found, dependin
on the correlations. In the second possible scenario,d51
holds for the parity machine only, and all other hidde
output correlations result in ad with a finite distance from 1.

D. Space of possible correlations

The simultaneous prescription of correlations involvi
several hidden units has to take into account that not
combinations of correlations are possible since they all
rive from a common probability distribution. The question
whether there are forbidden combinations of correlations
what is their measure will be partially answered in the f
lowing discussion.

This paper is organized as follows. Section II sets the t
and fixes the notations. In Sec. III a formalism is presen
that is a generalization of the canonical phase space me
developed by Gardner and Derrida@18# for the single-layer
perceptron. Section IV contains general results for an a
trary numberK of perceptrons with a special subset of fix
correlations. In Secs. V and VI we study in detail the situ
tions ofK52 andK53 perceptrons, respectively, and com
pare the results with those known for tree-structured M
with the same number of hidden units. Finally, Sec. VII co
prises our conclusions.

II. THE STORAGE PROBLEM FOR CORRELATED
PERCEPTRONS

We considerK spherical perceptrons withN/K inputs,
one output, and couplingsJkPRN/K,JkJk5N/K with
k51, . . . ,K. Then we choose a set of (aN)K random inputs
jk

nPRN/K and one overall random outputsn561 with
n51, . . . ,aN. The total number of random input and outp
bits is henceaN(N11) and the number of adjustab
weights is N as for the standard perceptron and f
multilayer networks with tree-structure and fixed Boole
function between hidden units and output.

The outputs of theK perceptrons are given by

tk
n5sgnSAK

N
Jkjk

nD . ~1!

Our aim is to determine the critical numberacN of patterns
for which coupling vectorsJk exist such that the averages

c15^tks&5
1

aN(
n

tk
nsn, ~2!

c25^tkt ls&5
1

aN(
n

tk
nt l

nsn,
e

g
r-
-

-

ll
-

d
-

k
d
od

i-

-

-

c35^tkt ltms&5
1

aN(
n

tk
nt l

ntm
n sn,

A

cK5^t1•••tKs&5
1

aN(
n

t1
n
•••tK

n sn ~3!

have prescribed valuesc1 ,c2 , . . . ,cK . This can be seen as
generalization of the program of Gardner and Derrida~GD!
@18# who considered only one perceptron, i.e.,K51, and
determinedac in dependence on the fraction of errorsfGD
related toc1 by c15122 fGD. An important aspect of the
present investigation is that not only the correlation of ea
individual outputtk with s but also the correlation betwee
different tk is taken into account.

As usual we assume that the components of the in
patternsjk

n as well as the overall outputssn are independent
random variables with zero mean and unit variance. T
transformationjk

n→snjk
n then preserves the statistical prop

erties of the inputs. In the following we therefore tak
sn51 for all n51, . . . ,aN without loss of generality.

Note that due to the independence of the inputs at diff
ent perceptrons all outputstk have identical statistical prop
erties. Therefore the correlationscm as defined in Eqs.~2!
and~3! do not depend on the particular subset of hidden un
for which they are calculated. This corresponds to the p
mutation symmetry between hidden units in MLN with a
propriate decoder functions@4–6#.

It is particularly interesting to enforce correlationscm that
are identical to those that develop spontaneously in M
with special Boolean functions between hidden layer a
output. It has recently been shown how these correlati
can be calculated from the joint probability distribution o
the stabilities at the hidden units@10#. For the parity machine
with K hidden units one findscm50 for m,K andcK51.
For the committee machine the expressions are more c
plicated, for K53 one finds c155/12, c2521/6, and
c3523/4.

III. FORMALISM

To analyze the storage abilities of correlated perceptr
we use a generalization of the formalism introduced
Gardner and Derrida@18#. A well suited form for our pur-
poses is the one proposed by Griniasty and Gutfreund@19#.
We are hence led to introduce amultiperceptron cost func-
tion @20#:

E~J1 ,•••,JK!5(
n

V~t1
n , . . . ,tK

n ! ~4!

5(
n

F2(
k

tk
n1m2(

~k,l !
tk

nt l
n

1m3 (
~k,l ,m!

tk
nt l

ntm
n 1•••

1mKt1
n
•••tK

n G . ~5!
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The parametersmm play the role of chemical potentials de
termining the costs for a violation of the constraints on
correlationscm . Our aim is to characterize the coupling ve
tors Jk that minimizeE(J1 , . . . ,JK) and to find the critical
u
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thresholdac for the number of inputs for which no coupling
(J1 , . . . ,Jk) exist that realize the desired correlations. Th
can be done by calculating the free energy
f ~a,b,m2 , . . . ,mK!52 lim
N→`

1

bN K K lnE )
k51

K

dm~Jk!exp@2bE~J1 , . . . ,JK!#L L , ~6!
and

g the
e
en

in

has

ian

es
where^^•••&& denotes the quenched average over the inp
and dm(J)5(2pe)2N/2K) i51

N/KdJid(( i51
N/KJi

22N/K) is the
usual integration measure for spherical perceptrons. The

g~ac ,m2 , . . . ,mK!5 lim
b→`

f ~a,b,m2 , . . . ,mK! ~7!

gives the typical minimum ofE(J1 , . . . ,JK). The limit
b→` corresponds to the saturation limita→ac . The values
cm
(s) of the correlationscm defined in Eq.~2! in this saturation
limit are from Eqs.~4! and ~6! given by

1

ac
g~ac ,m2 , . . . ,mK!52Kc1

~s!

1m2SK2 D c2~s!1•••1mKcK
~s!, ~8!

1

ac

]g~ac ,m2 , . . . ,mK!

]mk
5SKk D ck~s! , k52, . . . ,K. ~9!

Inverting these equations, we find the saturation valuesac

andmm
(s) as functions ofc1 , . . . ,cK , which is what we were

looking for.
The calculation ofg(ac ,m2 , . . . ,mK) proceeds along

similar lines as for the single perceptron case studied in@19#.
Within replica symmetry one has to introduce an order
rameterq characterizing the typical overlap between tw
coupling vectors that contribute significantly to the free e
ergy ~6!. In the limit b→` it is convenient to replace thi
order parameter byx5b(12q). If the minimum of the cost
function is not degenerated, we will findq→1 for b→`
with x remaining of order 1. Qualitativelyx describes the
steepness of the minimum of the cost function. The sma
x, the fewer couplings contribute significantly to the fr
energy for largeb, i.e., the steeper the minimum of the co
function. Accordinglyx5` corresponds to a degenerat
minimum sinceqÞ1 even forb→`.

For all choices of the parametersmm there is a minimum
Vmin5min$tk%

V(t1 , . . . ,tK) of V(t1 , . . . ,tK) and hence

aNVmin is a lower bound for the cost functio
E(J1 , . . . ,JK). Now consider the subset of$tk% configura-
tions that realizeVmin and calculate the correlationscm for
this subset. The resulting values for thecm are special in two
respects. First, the value ofac corresponding to them wil
occur forx5` since the minimum ofE is degenerated fo
a,ac . Second, exactly these values ofcm will occur in a
MLN with that Boolean function between hidden layer a
ts

-

-

r

output that maps all the$tk% configurations that result in
Vmin on the output11. Consequently MLN withK hidden
units and a fixed Boolean function between hidden layer
output will show up as ‘‘pure cases’’ defined byx5` at
ac in our analysis and all situations withx,` can be inter-
preted as these pure cases above saturation. Changin
parametersmm or equivalently the prescribed values of th
cm will hence induce continuous transformations betwe
the different possible MLN.

The main steps of the formal analysis are sketched
Appendix A. The final result reads as follows@cf. Eqs.~A10!
and ~A11!#:

g~ac ,m2 , . . . ,mk!52min
x

F 12x2acE )
k
DtkF~x,tk!G ,

~10!

where

F~x,tk!5 min
l1 ,...,lK

F 12x(k ~lk2tk!
2

1V„sgn~l1!, . . . ,sgn~lK!…G ~11!

andDt5exp(2t2/2)dt/A2p.
The minimization in Eq.~11! is nontrivial. The quadratic

terms in Eq.~11! are smallest forlk
05tk . They compete with

the step functions inV„sgn(l1), . . . ,sgn(lK)…, giving rise to
discontinuous jumps inF whenever onelk crosses zero.
Closer inspection shows that for the global minimum one

lk
05tk or lk

05H 01 if tk,0

02 if tk.0.
~12!

The saddle point equation that determinesx can be written in
the form

1

ac
5E )

k
Dtk(

k
~lk

02tk!
2. ~13!

Note that in this equation only those regions in the Gauss
integrals for whichlk

0Þtk contribute.

IV. GENERAL RESULTS FOR PRESCRIBED HIGHEST
AND LOWEST CORRELATION

Of particular interest is the case in which only the valu
of c1 andcK are prescribed, i.e.m25m35•••5mK2150 in
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TABLE I. Correlation coefficients and storage capacity for an ensemble ofK perceptrons in the pure
cases characterized byx5` ~see text!.

m c1 (x5`) cK (x5`) 1/ac (x5`)

I m,1 1 1 K/2
II m51 122/K11/2(K21)K 2111/2(K21)

K/22K*2`
0 Dt t2@H(t)#K21

III m.1 122/K 21
K/22K*0

`Dt t2„@H(2t)#K212@H(t)#K21
…
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the cost function~4!. It describes the interpolation betwee
individual perceptrons (mK50) and the parity machine
(mK→6`), which is known to saturate the asymptotic u
per boundac5 lnK/ ln2 for the storage capacity for largeK
@4#. This special case is also sufficient to discuss the rela
with the most important tree-structured MLN forK52 and
K53. Moreover, the necessary algebra simplifies somew

Let us first note that the correlation coefficientsc1 and
cK are not independent of each other. It is hence not poss
to prescribe arbitrary values for them. According to th
definition ~2!,~3! we always havec1 ,cKP(21,11). More-
over, it is sufficient to consider positive values ofc1 only,
which is guaranteed by the structure of the cost function~4!.
Finally the relation

cK>Kc12~K21! ~14!

must hold. It is a consequence of the obvious observa
that the difference betweenc1 andcK is maximal if for every
pattern at most one perceptron has negative output, w
corresponds to the equality sign in Eq.~14!.

To perform the detailed analysis we denotemK simply by
m to get

E~J1 , . . . ,JK!5(
n

F2(
k

tk
n1m)

k
tk

nG . ~15!

Accordingly Eq.~11! simplifies to

F~x,tk!5 min
l1,...,lK

F 12x(k ~lk2tk!
22(

k
sgn~lk!

1msgn~l1l2•••lK!G . ~16!

In Appendix B the following expressions for the correlatio
coefficientsc1 andcK are derived:

c15122H~2Ax!2@ f 1~ umu,x,0!2 f 2~ umu,x,0!#, ~17!

cK52K@1/22H~2Ax!#K

2Ksgn~m!@ f 1~ umu,x,0!1 f 2~ umu,x,0!# ~18!

Moreover the saddlepoint equation fixingx can be trans-
formed into
n

t.

le
r

n

ch

1

Kac
5
1

2
2H~2Ax!22Ax

e22x

A2p

1
1

2
@ f 1~ umu,x,1!1 f 2~ umu,x,1!#. ~19!

As usual we have used the abbreviationH(x)5*x
`Dt.

f 1(umu,x,L) and f 2(umu,x,L) ~with L50,1) are integrals
over sums of products of error functions explicitly given
Appendix B. The final analysis of these equations has to
done numerically.

As discussed in the last section it is of particular inter
to find the correlationsc1 and cK for which x5` at ac .
From Eqs.~17!–~19! and~B8!–~B11! we find the results tha
are listed in Table I.

Note that all three pairs (c1 ,cK)u(x5`) lie on the line
given by Eq.~14!, in fact ~I! and ~III ! are the end points o
this line.

It is at first sight surprising that the parity machine do
not occur in Table I. However, from the structure of the co
function Eq.~15! it is clear that the internal representatio
of the parity function realizeVmin only in the limit
m→6`. For finite umu the first term in Eq.~15! suppresses
configurations with more than one negative output and gi
rise to case~I! or ~III !.

V. K52

The simplest case to apply the above concepts is prov
by two perceptrons withN/2 inputs each corresponding t
K52. The only relevant correlations arec1 andc2 @see Eqs.
~2! and ~3!#. The relative importance of these in the co
function ~15! is regulated bym.

Solving Eq.~19! numerically for the caseK52 we find
c1(ac ,m) andc2(ac ,m) from Eqs.~17! and~18! and invert-
ing these dependencies we arrive atac(c1 ,c2).

In Fig. 1 ~left! the dependence ofac on c2 for several
values ofc1 is shown. Solutions exist only inside the shad
areas whose boundaries correspond toc150 and
c252c121, respectively@cf. Eq. ~14!#. The maxima of
ac(c2) at constantc1 occur for the uncorrelated system
m50, implying c25c1

2 as expected since an additional co
straint onc2 can only reduceac . The values ofac(c1 ,c1

2) at
these maxima are consistent with the results of Gardner
Derrida for the minimal fraction of errorsfGD5(12c1)/2
@18#.

As a complement, the dependenceac(c1) for fixed c2 is
shown in the right part of Fig. 1. Lines forc2 and2c2 start
at the same point forc150. This corresponds tom56`,



eas

55 7373STORAGE CAPACITY OF CORRELATED PERCEPTRONS
FIG. 1. Storage capacityac(c1 ,c2) for K52 correlated perceptrons. Left:ac(c2) for c150, 0.4, 0.5, and 0.6. Outside the shaded ar
no solutions exist; dark shade corresponds tom.1 and light shade tom,1. The dashed-dotted line (m50) gives the location of the
maxima. The symbols denote the pure cases corresponding to the MLN summarized in Table II. Right:ac(c1) for ~from bottom to top!:
c251, 0.8, 0.7, and 0.5~dashed! and c2520.8,20.7, and20.5 ~full !. The lines end at the thin line given byc252c121. The symbol
corresponds to the parity machine.
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where the value ofc1 has negligible influence on the co
function ~15!. With increasingc1 the value ofac always
decreases because additional constraints are to be sati
These new constraints give rise toc1.0 and are hence
harder to satisfy for negative values ofc2. Finally all lines
end at the thin line given byc252c121.

The pure cases forK52 defined byx5` at ac are indi-
cated by symbols in Fig. 1. They correspond to two-la
networks with two hidden units and fixed Boolean functio
between hidden layer and output and are summarized
Table II.

In our analysis the AND machine denotes the situation
which the two perceptrons have to givesimultaneouslythe
correct outputsn511 for all patterns. The storage capaci
is hence given by the Gardner result, i.e.,ac51 since each
perceptron hasN/2 couplings only. Note that the AND ma
chine investigated in@12# has random outputssn561 and
therefore the value forac is different. The XOR function
defines theK52 parity machine for which the replica
symmetricac was first obtained in@3,4#. The result for the
OR machine is new; again it refers to the situation wh
random inputs all have to be mapped onsn511. Finally let
us note that there is another rather trivial pure case given
c15c250 with ac5` corresponding to the Boolean func
tion that gives output11 on any input.

The results obtained forK52 are summarized in Fig. 2
which shows the region of allowed values in thec1-c2 plane
together with lines of constantac and constantm. The ar-

TABLE II. Patterns of correlations forK52 perceptrons
equivalent to two-layer networks with fixed Boolean function b
tween hidden units and output.

Symbol in
Fig. 1 c1 c2 ac (x5`) m Boolean function

Triangle 1 1 1 ,1 AND
Square 1/4 21/2 11.01 51 OR
Circle 0 21 5.50 .1 XOR
ed.

r

in

n

e

by

rows at the lines of constantm point to smaller values of
ac . The above discussed hidden unit machines are a
marked by the symbols of Table II. All other points can
interpreted as these machines above their storage capa
Note that the same point could be associated with differ
machines beyond saturation since by prescribing the corr
tions appropriately we can induce continuous transitions
tween different machines.

VI. K53

A similar analysis can be performed forK53. As dis-
cussed in Sec. IV we setm250 and denotem3 simply by
m. Similar to the last section we can then determi
ac(c1 ,c3) from a numerical analysis of Eqs.~17! and ~18!.

Figure 3~left! shows the dependence of the critical sto
age capacityac on c3 for fixed values ofc1. The dependen-

-

FIG. 2. Contour map ofac(c1 ,c2) andm(c1 ,c2) for K52 cor-
related perceptrons. Full lines correspond
ac5100, 11.015ac

OR, 5.505ac
XOR ~from left to right!, dashed

lines tom5210, 22, 21, 0, 0.99, 1.01, 2, and 10~from top to
bottom!. Symbols denote the same MLN as in Table II.
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FIG. 3. Storage capacityac(c1 ,c3) for K53 correlated perceptrons. Left:ac(c3) for c150, 1/3, 5/12 and 3/5. Outside the shaded are
no solutions exist, dark shade corresponds tom.1, light shade tom,1. The dashed-dotted line (m50) gives the location of the maxima
The symbols denote the pure cases corresponding to the MLN summarized in Table III. Right:ac(c1) for ~from bottom to top!:
c351, 0.9, and 0.5~dashed! andc3521,20.9 and20.5 ~full !. The lines end at the thin line given byc353c122. The symbol correspond
to the machine giving overall output11 only if exactly one hidden unit is21.
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cies are rather similar to the caseK52 shown in the left part
of Fig. 1. Again solutionsc1(ac ,c3) exist only in shaded
areas. The maxima of theac(c3) curves lie on the dash
dotted line corresponding to independent perceptr
(m50). They are hence characterized byc35c1

3 and are
again consistent with the Gardner-Derrida results on
minimal fraction of errors for perceptrons above saturat
@18#.

As a complement, the dependenceac(c1) for fixed values
of c3 is shown in the right part of Fig. 3. Again, similar t
the caseK52, we find thatac decreases with increasin
c1. In particular, the lines forc3561 show how the storage
capacity decreases from the value of theK53 parity ma-
chine at c150 if additional constraints showing up i
c1.0 are included. All lines end at the thin line given b
c353c122.

The symbols in Fig. 3 refer again to pure cases w
x5` at ac corresponding to the MLN summarized in Tab
III. In addition to the AND and parity machine we now hav
the committe machine and a machine with the Boolean fu
tion for which the output is11 if exactly onehidden unit is
21.

We can again summarize the results in a contour p
showing lines of constantac andm in the c1-c3 plane~Fig.
4!. Only combinations ofc1 andc3 that belong to the shade
areas are possible: the light shade corresponds tom,1, dark
shade tom.1. The arrows at the dashed lines of const
m point again into regions of lowerac ; the symbols are
s

e
n

h

c-

t

t

those of Table III. Large values ofc1 imply a strong corre-
lation of every perceptron with the common output and g
therefore smallac and a narrow interval of consistent value
of c3. Relaxing the constraint onc1 allows a more efficient
‘‘division of labor’’ between the perceptrons and results in
broader spectrum ofc3 values and enhanced storage cap
ity. Accordingly the largest values ofac are possible for
c150. Thenac only depends onc3 and starting from the
value 10.37 for the parity machine atc3561 it increases
without bound with decreasinguc3u.

An important aspect of the caseK53 is that there is a
correlation coefficient,c2, that was not presribed~since we
putm250). It is nevertheless of interest to know the value
c2 that corresponds to different choices ofc1 and c3. The
easiest way to obtainc2 is via a maximum entropy argumen
This is sketched in Appendix C. The result is

c252
1

2
1A1

4
1c1

21c1c3. ~20!

It is interesting to note that for the valuesc155/12 and
c3523/4 characteristic for the committee machine this fo
mula givesc2521/6, which is in fact the correct result@10#.
The committee function forK53 hence does not imply con
straints onc2 and is already uniquely characterized by t
values ofc1 andc3.
ed
TABLE III. Patterns of correlations forK53 perceptrons equivalent to two-layer networks with fix
Boolean function between hidden units and output.

Symbol in Fig. 3 c1 c3 ac (x5`) m Boolean function

Triangle 1 1 2/3 m,1 AND
Star 5/12 23/4 4.02 m51 Committee
Diamond 1/3 21 3.669 m.1 (211),(121),(112)
Circle 0 61 10.37 m56` Parity
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VII. CONCLUSIONS

In the present paper we have considered ensemblesK
perceptrons with random inputs and investigated the po
bility to choose the couplings such that prescribed corre
tions cm between the outputs of the perceptrons occur.
any combinatorically possible combination ofcm there is a
critical valueac(c1 , . . . ,cK) and solutions for the coupling
of the perceptrons exist if the number of inputs is less th
Nac . These investigations establish a relation between
results for single perceptrons above their storage capa
and those for several MLN with tree structure andK hidden
units and fixed Boolean function between hidden layer a
output. Similar ideas were pursued in@11# and @13# where
approximate expressions for the storage capacity of a pa
machine and committee machine, respectively, were
tained from the results of Gardner and Derrida on the m
mal fraction of errors of perceptrons beyond saturation
in @21# where analogies between a committee machine
noisy perceptrons were investigated. In the present pape

FIG. 4. Contour map ofac(c1 ,c3) andm(c1 ,c3) for K53 cor-
related perceptrons. Full lines correspond
ac5100, 10.375ac

PAR, 4.025ac
COM and 2 ~from left to right!,

dashed lines tom5210, 22,21,0, 0.99, 1.01, 2, and 10~from
top to bottom!. Symbols denote the same MLN as in Table~III !.
i-
-
r

n
e
ity

d

ity
b-
i-
d
d
he

influence of higher correlations that are known to be imp
tant for the storage abilities was also taken into account.
results show which correlations are difficult to impleme
and are therefore important for the determination of the s
age capacity and which are easy and therefore not very
strictive. A detailed analysis was carried out forK52 and
K53.

The technique used is a generalization of the canon
phase space analysis introduced by Gardner and Derrida.
results were obtained within the replica-symmetric ansa
They should hence be seen as a mere first orientation sin
its well known that replica-symmetry breaking~RSB! is cru-
cial for both the description of perceptrons above satura
@22# and the storage abilities of MLN@4–6#. An investiga-
tion of the problem within RSB though highly desirab
seems technically rather involved. Also the extension of
analysis to asymptotic behavior forK→` would be very
interesting and would hopefully shed some light on the s
controversial problem of the storage capacity of MLN in th
limit.
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APPENDIX A

In this appendix we outline the calculation of the fre
energy Eq.~6! corresponding to the cost function Eq.~4!
within replica symmetry. To this end we employ a genera
zation of the formalism of Griniasty and Gutfreund@19#.

To perform the average over the random patterns we
the replica trick

f ~m2 , . . . ,mK ,b!52
1

bN
^^ lnZ&&52

1

bN
lim
n→0

Š^Zn&‹21

n

~A1!

involving the partitition functionZ:
Z5E
2`

`

)
k

dJk
A2pe

d~Jk
22N/K !E

2`

`

)
kn

dlk
nd~lk

n2Jkjk
nAK/N!e2b(n

aNV~l1
n , . . . ,lK

n
!

V~l1
n , . . . ,lK

n !52(
k
sgn~lk

n!1m2(
~k,l !

sgn~lk
nl l

n!1•••1mKsgn~l1
m
•••lK

m!. ~A2!

Introducing integral representations for thed functions and performing the average over the patterns we find

Š^Zn&‹5E
2`

`

)
a,b;k

dqk
abE

2`

`

)
a,b;k

dFk
ab N

2pKE2`

`

)
a;k

dEk
a

4pK
expSNKF12(k tr~QkAk!1G2~Fk

ab ,Ek
a!G1aNG1~Q1•••QK! D ,

~A3!

where
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G2~Fk
ab ,Ek

a!52
1

2(k @n1tr~ lnAk!# ~A4!

and

G1~Q1•••QK!5 lnF E
2`

`

)
k
dlkE

2`

`

)
k

dyk
~2p!n

expS i(
k
yklk2

1

2(k ykQkyk
T1b(

a
V~l1

a , . . . ,lK
a !G . ~A5!

Herelk5(lk
1 , . . . ,lk

n) andyk5(yk
1 , . . . ,yk

n) and we have used the matricesQk andAk :

Qk5S 1 qk
ab

qk
ab 1

D , Ak5S iEk
a 2 iF k

ab

2 iF k
ab iEk

a D , ~A6!

where as usualqk
ab describes the overlap between two replicasa,b in the coupling space of perceptronk,

qk
ab5Jk

aJk
bK/N. ~A7!

The saddle point forEk
a andFk

ab is given byQk
215Ak , resulting in

Š^Zn&‹.E
2`

`

)
a,b;k

dqk
abexpS N

2K(
k
ln~detQk!1aNG1~Q1•••QK! D . ~A8!

To evaluate the remaining saddle point integral we use the replica-symmetric ansatzqk
ab5qk for all aÞb. Moreover, we

expect permutation symmetry between the different perceptrons implyingqk5q for all k51,•••,K. Then
ln@detQ#5n@ ln(12q)1q/(12q)# and forG1(q1 ,..,qK) it follows that

G1~q!5 lnF E
2`

`

)
a;k

dlk
aE

2`

`

)
a;k

dyk
a

2p
expS i(

a;k
yk
alk

a2
12q

2 (
a,k

~yk
a!22

q

2(k S (
a

yk
aD 22b(

a
V~l1

a , . . . ,lK
a ! D G

.nE
2`

`

)
k
DtklnE

2`

`

)
k

dlk

A2p~12q!
expS 2(

k

~lk2tkAq!2

2~12q!
2bV~l1 , . . . ,lK! D . ~A9!

In order to calculate the functiong(ac ,m2 , . . . ,mK) @Eq. ~7!# we have to consider thesaturation limit b→`. It is
convenient then to use the rescaled saddle point variablex5b(12q) instead ofq. In this way we obtain

g~ac ,m2 , . . . ,mK!52min
x F 12x2acE

2`

`

)
k
DtkF~x,t1 ,t2 , . . . ,tK!G , ~A10!

F~x,t1 ,t2 , . . . ,tK!5 min
l1 , . . . ,lK

S (
k

~lk2tk!
2

2x
1V~l1 , . . . ,lK! D , ~A11!

which coincides with Eq.~10!. The saddle point equation~13! determiningx follows by explicit differentiation of Eq.~A10!
with respect tox.

APPENDIX B

In this Appendix we sketch the main steps of the derivation of the saddle point equation~13! and of the free energy~A10!
for the case where onlyc1 andcK are prescribed. We also give the explicit expressions forc1 andcK as a function ofac and
m.

The calculation ofg as given by Eqs.~A10! and ~16! requires minimization of

F~x,t1 ,t2 , . . . ,tK!5 min
l1 ,l2 , . . , lK

F (
k51

K
~lk2tk!

2

2x
2 (

k51

K

sgn~lk!1m)
k51

K

sgn~lk!G . ~B1!

From Eq.~12! we have

sgn~lk
0!5H sgn~ tk! if lk

05tk

2sgn~ tk! otherwise.
~B2!
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Equation~B1! then becomes

F~x,t1 ,t2 , . . . ,tK!5FmS~l 0!2 (
k51

K

sgn~ tk!1 (
; jl j

0
506

S t j22x12 sgnt j D G . ~B3!

HereS(l0)5)k51
K sgn(lk

0)5(21)m)k51
K sgn(tk) werem counts alllk

0[0. The last sum in Eq.~B3! has only contributions
from thosel with l j

0506.
To minimize F for given t5t1 , . . . ,tK we have to find which of the 2K configurations$l1

0 , . . . ,lK
0 % , lk

05$06,tk%,
minimizes Eq.~B3!. A suitable procedure to do this is as follows. We first make the last term in Eq.~B3! as small as possible
That is for all t j with t jP(22Ax,0) we choose for a first tryl j

0506. We denote the resulting value forS(l 0) by S* .
@S*5(21)h whereh is the number of alltk,22Ax.# If mS* (t),0, the optimal configuration has already been fou
because the first summand is at its miminum as well. If, on the other hand,mS* (t).0 there is competition between the fir
and the last terms in Eq.~B3!. One may then change the sign ofS(l0) in order to lowerF(x,t1 ,t2 , . . . ,tK) by 2umu by either
setting a singlel l

0506 althought l¹(22Ax,0) or setting a singlel l
05t l for one t lP(22Ax,0). The corresponding change

in F are 2@w(t l)2umu#, where

w~ t !5H t2/4x2 1 if tP~2`,22Ax!

2t2/4x1 1 if tP~22Ax,0!

t2/4x1 1 if tP~0,̀ !.

~B4!

In the saddle point equation~13! only regions in the integral contribute for whichl j
0Þt j for at least onej . Formalizing the

above consideration we find

1

ac
5E

2`

`

•••E
2`

`

Dt1•••DtKH (
k51

K

tk51
2 Q I~ tk!1KQ~mS* !Q„umu2w~ t1!…t1

2~21!Q I ~ t1!)
k52

K

Q„w~ tk!2w~ t1!…J , ~B5!

Q I~ t !5H 1 if tP~22Ax,0!

0 otherwise.
~B6!

The first term of Eq.~B5! stems from our first guess minimizing the last term of Eq.~B3! only. The variousQ functions
in the term that contributes only formS*.0 implement the different cases discussed in context with Eq.~B4!. The integration
variables can be defined such thatt1,t2,•••,tK always with no restriction of generality.

The integration overt2 , . . . ,tK yields a product of sums of two error functions. Finally the saddle point equation rea

1

Kac
5
1

2
2H~2Ax!22Ax

e22x

A2p
1
1

2
@ f 1~ umu,x,1!1 f 2~ umu,x,1!#, ~B7!

f 1~ umu,1,x,L !5@21#LE
22Ax

22Ax~12umu!
Dt1t1

2L
„@H~ t1!1Hm~ t1!#

K211sgnm@H~ t1!2Hm~ t1!#
K21

…, ~B8!

f 1~ umu.1,x,L !5H E
0

2Ax~ umu21!
Dt1t1

2L
„@H~ t1!1Hp~ t1!#

K211sgnm@H~ t1!2Hp~ t1!#
K21

…

1@21#LE
22Ax

0

Dt1t1
2L
„@H~ t1!1Hm~ t1!#

K211sgnm@H~ t1!2Hm~ t1!#
K21

…J , ~B9!

where we introduced the abbreviationHp(t1)5H(A8x1t1
2), Hm(t1)5H(Au8x2t1

2u), and Hm
2(t1)5H(2Au8x2t1

2u). As
usualH(t)5* t

`Dt. Similarly

f 2~ umu,1,x,L !5E
22Ax~11umu!

22Ax
Dt1t1

2L
„@Hm

2~ t1!1H~2t1!#
K212sgnm@Hm

2~ t1!2H~2t1!#
K21

…, ~B10!

f 2~ umu.1,x,L !5H E
22A2x

22Ax
Dt1t1

2L
„@Hm

2~ t1!1H~2t1!#
K212sgnm@Hm

2~ t1!2H~2t1!#
K21

…

1E
22Ax~11umu!

22A2x
Dt1t1

2L
„@Hm~ t1!1H~2t1!#

K212sgnm@Hm~ t1!2H~2t1!#
K21

…J
~B11!



s with

7378 55D. MALZAHN, A. ENGEL, AND I. KANTER
A common feature of Eqs.~B8!–~B11! is that in the binomial expression those terms cancel, which correspond to region
mS*,0.

The calculation ofg proceeds along similar lines:

g/ac5E
2`

`

•••E
2`

`

Dt1•••DtKH mS*2 (
k51

K

sgn~ tk!12 (
; jl j

0
50

sgnt jJ
5E

2`

`

•••E
2`

`

Dt1•••DtKH mS*22(
k51

K

Q I~ tk!12KQ~mS* !Q„umu2w~ t1!…@2mS*1~21!Q I ~ t1!sgn~ t1!#

3)
k52

K

Q„w~ tk!2w~ t1!…J . ~B12!

We find

g/ac522KE~2Ax!12KmEK~2Ax!1K$ f 1~ umu,x,0!2 f 2~ umu,x,0!2umu@ f 1~ umu,x,0!1 f 2~ umu,x,0!#%. ~B13!
o
a

e
the

all
Performing the derivative ofg/ac with respect tom one
realizes that there is no contribution from them dependence
of the integration limits in Eqs.~B8!–~B11!. Hence the ex-
pression ~B13! for g/ac is already of the form
g/ac52Kc11mcK and we arrive at Eqs.~17! and ~18! for
the correlation coefficientsc1 andcK .

APPENDIX C

To determinec2 for given values ofc1 andc3 we look for
the probability distributionP(t1 ,t2 ,t3) that for the given
values ofc1 andc3 realizes the maximal entropy. Because
the permutation symmetry between the perceptrons we h
only to determine the probabilitiespk of output configura-
tions with k negative outputs wherek50, . . . ,3.Hence we
have to maximize
t

.

1)
f
ve

S52p0lnp023p1lnp123p2lnp22p3lnp31l0~p013p1

13p21p321!1l1~p01p12p22p32c1!

1l3~p023p113p22p32c3!, ~C1!

where thelk are the Lagrange multipliers incorporating th
constraints. Performing the derivatives with respect to
pk yields

p0p35p1p2 . ~C2!

Using the constraints to solve for thepk gives

c252
1

2
6A1

4
1c1

21c1c3, ~C3!

where only the upper sign gives rise to positive values for
pk .
r,
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