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Storage capacity of correlated perceptrons
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We consider an ensemble #f single-layer perceptrons exposed to random inputs and investigate the
conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations
between the outputs occur. A general formalism is introduced using a multiperceptron cost function that allows
one to determine the maximal number of random inputs as a function of the desired values of the correlations.
Replica-symmetric results fd=2 andK=3 are compared with properties of two-layer networks of tree-
structure and fixed Boolean function between hidden units and output. The results show which correlations in
the hidden layer of multilayer neural networks are crucial for the value of the storage capacity.
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I. INTRODUCTION picture has already been used to propose and analyze a learn-
ing algorithm for a special MLN, the parity machif&l]. It
One of the central tasks in the field of statistical mechanhas been observed for some time that the organization of
ics of neural networks is a deeper understanding of the ininternal representations described by these correlations is
formation processing abilities of multilayer feed-forward crucial for the understanding of the storage and generaliza-
networks (MLN) [1,2]. After a thorough analysis of the tion abilities of MLN [3,12—15.
single-layer perceptron it soon became clear that the very The approximation suggested in this work is to replace
properties that entail the larger computational power of MLN«qjyision of labor” by an“average division of labor.” An
also make their theoretical description within the frameworky,h oximate treatment of a MLN becomes possible if one
of statistical mechanics much harder. Even the simplest casg,es not require a definite mapping from the hidden layer to

with just one hidden layer containing many fewer units thanthe output but instead prescribes the values for the correla-

the 'r?p“t layer and with a prewired Boolean function from tions, i.e., theaveragerelation between the hidden units and
the hidden layer to the output has proven to be rather comy

) ; : he output and also among the different hidden units them-
plicated to analyze exact[8—6). It is therefore important to celves. The task is then to determine how many random in-
develop useful and reliable approximate methods to stud\é1 ' y

t

these practically important systems. For the characterizatio uts can be n;:plergeptz_ed by a sleﬁ@perceptrons, such that
of the generalization abilithoundsfor the performance pa- € outputs show definite correlations.

rameters have been shown to yield useful orientatj@r.

For the storage capacity, i.e., the typical ma>_<|mal number of B. Interplay between correlations and the capacity
random input-output mappings that can be implemented by

the network, only rather crude bounds exist so far, and these This approach will highlight which type of correlation is

are independent of the hidden-to-output mapp®i easy to implement and which is difficult, i.e., reduce the

. X . ) r§torage capacity significantly. It is already known that in-
questions regardln_g the capacity .Of MLN. These queStlonsCreasing the average correlation between each one of the
although only partially answered in the present work, may, . . . .

; S . hidden units and the desired output decreases the capacity.
serve as a call for further investigation by the community OfThis result can be exemplified by the following well-known
the statistical mechanics of neural networks. - pimed by I 9 .

limits. The lowest capacity is achieved for hidden units,

which are fully correlated with the desired outputs. In this

A. Correlations among the hidden units case there is no division of labor and the MLN shrinks to a

simple perceptron. The other limit is the parity machine, in

The increased computational power of MLN stems from hich th lation b h hidd it and th
the possibility that the different subperceptrons between in¥nich the correlation between each hidden unit and the out-

put and hidden layer can all operate in the region beyon®Ut iS zero. In this case the upper bound for the capacity of
their storage capacity. The typically occurring errors of thisMLN with one hidden layer is achieved. Nevertheless, the
regime can be compensated by other subperceptrons. Ho@eneral framework of how the capacity depends on the cor-
ever, this “division of labor” only works appropriately if the relations between the output ancpartial setof the hidden
errors do not occur for all subperceptronstite samepat-  Units is still unknown. The main problem is that with increas-
terns. Hence, intricate correlations depending on the hiddering K there is a tradeoff between a more flexible division of
to-output mapping develop in the hidden layer when thdabor and an increasing complexity of possible correlations
number of input-output pairs increadd®]. This qualitative  [16,17).
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C. Possible scaling for the capacity 1
Of particular interest is the limit of an infinite numbkr Ca= (77 Tm0>_a_N2,, 7Tt Tm
of hidden units for which only few analytical results are
known. For the AND machine the capacity is ©f1) [12],
whereas for the committee machine and the parity machine
the capacity is of order (K)?, with §=1/2 [15] and 1[4], 1
respectively. These results may suggest one of the following ck={(7y" - TKU>:_Z 1 TRO” 3
two possible scenarios: in the first scenario, the capacity var- aN%
ies continuously as a function of the hidden-output correla- ] )
tions. Any & in the range 8 8<1 can be found, depending Nave prescribed values,c,, ... Cx . This can be seen as a
on the correlations. In the second possible scenatiol ~ 9eneralization of the program of Gardner and DerfiG®)
holds for the parity machine only, and all other hidden-[18] who considered only one perceptron, i.K=1, and

output correlations result in &with a finite distance from 1. determineda. in dependence on the fraction of errdigp
related toc, by c;,=1-2f5p. An important aspect of the

present investigation is that not only the correlation of each

) o ) _ ~individual outputr, with o but also the correlation between
The simultaneous prescription of correlations involving different r, is taken into account.

several hidden units has to take into account that not all As usual we assume that the components of the input
combinations of correlations are possible since they all depatternsgl’(’ as well as the overall outputs’ are independent
rive from a common probability distribution. The question of \3nqom variables with zero mean and unit variance. The
whether there are forbidden combinations of correlations a”gransformationgﬁe o& then preserves the statistical prop-
what is their measure will be partially answered in the fo"erties of the inputs. In the following we therefore take

Iowmg d|scuss_|on. : . o’=1 for all v=1, ... ,@N without loss of generality.
This paper is organized as follows. Section Il sets the task Note that due to the independence of the inputs at differ-

and fixes the no.tati(.)ns. In Sec. Il a formalism is presenteqem perceptrons all outputg have identical statistical prop-
that is a generalization of the ca_nonlcal phase_ space meth%clities_ Therefore the correlations, as defined in Eqs(2)
developed by Gardner and Derrifit] for the single-layer .and(3) do not depend on the particular subset of hidden units

perceptron. Section IV containg general FeS“'tS for an.arb'for which they are calculated. This corresponds to the per-
trary nu_mberK of perceptrons with a spec!al subset of f|_xed mutation symmetry between hidden units in MLN with ap-
correlations. In Secs. V and VI we study in detail the S'tua'propriate decoder functiorjg—6]

tions tor: K=2 ?tndK_t=h3thperce|£)trons, frestpecnvtely, tand dC&Tl'\I It is particularly interesting to enforce correlatiotg that
pare he results wi 0se known for trée-structure are identical to those that develop spontaneously in MLN

W'_th the same num_ber of hidden units. Finally, Sec. VI COM-ith special Boolean functions between hidden layer and
prises our conclusions. output. It has recently been shown how these correlations
can be calculated from the joint probability distribution of
Il. THE STORAGE PROBLEM FOR CORRELATED the stabilities at the hidden unit&0]. For the parity machine
PERCEPTRONS with K hidden units one finds,,=0 for m<K andcy=1.

We considerk spherical perceptrons with/K inputs, F(_Jr the committee machirje the expressions are more com-
one output, and couplingsl, e RVK,J,J,=N/K  with plicated, for K=3 one findsc,;=5/12, ¢c,=—1/6, and
k=1, ... K. Then we choose a set ak{)K random inputs  C3= — 3/4-

& cRVK and one overall random output’=+1 with

v=1, ... ,aN. The total number of random input and output . FORMALISM

bits is henceaN(N+1) and the number of adjustable

weights is N as for the standard perceptron and for
multilayer networks with tree-structure and fixed Boolean
function between hidden units and output.

The outputs of th&K perceptrons are given by

v K v
=59 N:Jkgk

Our aim is to determine the critical numbegN of patterns
for which coupling vectorg, exist such that the averages

D. Space of possible correlations

To analyze the storage abilities of correlated perceptrons
we use a generalization of the formalism introduced by
Gardner and Derridf18]. A well suited form for our pur-
poses is the one proposed by Griniasty and Gutfrgdssdl
We are hence led to introducenaultiperceptron cost func-
tion [20]:

. (1)

EQy,-- 3= V(4, ....70) (%)

-3 |- ey
1 ” K )
C=(mo)= mz o, 2
v
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The parameterg.,,, play the role of chemical potentials de- thresholda, for the number of inputs for which no couplings

termining the costs for a violation of the constraints on the(J,, ... ,J,) exist that realize the desired correlations. This
correlationsc,,. Our aim is to characterize the coupling vec- can be done by calculating the free energy

tors J, that minimizeE(J4, ... ,Jk) and to find the critical

|
K
1
fla,Buz, .. )=~ lim o= an IT du(30exd —BEQL, .. 30)1) ), (6)
N— oo l[gN k=1

where{(- - -)) denotes the quenched average over the inputsutput that maps all thé¢r,} configurations that result in
and du(J)=(27e) NXNKdJ, 6(=NMKI2—N/K) is the Vi, on the output+ 1. Consequently MLN witK hidden
usual integration measure for spherical perceptrons. Then units and a fixed Boolean function between hidden layer and
output will show up as “pure cases” defined =~ at
g(ac,p2, - )= M f(a,B 12, ... .ux) (7)) agin our analysis and all situations with< can be inter-

B preted as these pure cases above saturation. Changing the
parametersu,, or equivalently the prescribed values of the
cm Will hence induce continuous transformations between
the different possible MLN.

The main steps of the formal analysis are sketched in

gives the typical minimum ofE(Jq, ..., Jk). The limit
B— o corresponds to the saturation linit— o . The values
c!® of the correlations,, defined in Eq(2) in this saturation

limit are from Eqs.(4) and(6) given by Appendix A. The final result reads as follojw. Eqs.(A10)
1 and(A11)]:
a_g(aCJ*LZi "'UU“K):_KCg.S) 1
C .
< glac,ma, -« - )= _mm{g_acf l_k[ Dt F(X,ty) |,
X
+Mz( 2)0(25)+ e, (8) (10)
1 ag( ) (K where
Ao oy v vy
- % C”; S k)cﬁ, k=2,... K. (9) L
e e F(xt)=_min {52 (M= ti)?
k
Inverting these equations, we find the saturation valkigs Mohk
and . as functions ot . .. ¢, which is what we were
looking for. +V(sgn\y), - - . ,SOMiNk)) (11
The calculation ofg(ac,us, ... ,uk) proceeds along

similar lines as for the single perceptron case studi¢d % andDt=exp(—t%2)dt/ V2.

Within replica symmetry one has to introduce an order pa- The minimization in Eq(11) is nontrivial. The quadratic
rameterq characterizing the typical overlap between twotermsin Eq(11) are smallest fok J=t,.. They compete with
coupling vectors that contribute significantly to the free en-ne step functions iv(sgn(\,), . . . .sgn(\x)), giving rise to
ergy (6). In the limit B—co it is convenient to replace this giscontinuous jumps ifF whenever one\, crosses zero.

order parameter by=B(1—q). If the minimum of the cost ~ Closer inspection shows that for the global minimum one has
function is not degenerated, we will fing—1 for 8—o

with x remaining of order 1. Qualitativelx describes the o+ if t,<0

i~ : Ao=t, or \)= (12)
steepness of the minimum of the cost function. The smaller k™ tk K“lo~ if t.>o0.
X, the fewer couplings contribute significantly to the free
energy for larges, i.e., the steeper the minimum of the cost The saddle point equation that determixasan be written in
function. Accordinglyx=oc corresponds to a degeneratedthe form
minimum sinceq# 1 even forg—oo.

- : o 1
For a_II choices of the parametets, there is a minimum _:f H DtkE ()\E_tk)z- (13)
V min= mm{Tk}V(Tl, ...,7) of V(rq,...,7¢) and hence Qe k K
aNV., is a lower bound for the cost function N S ; ; . ;
) . ote that in this equation only those regions in the Gaussian
E(J4, - .. Jk).- Now consider the subset ¢f} configura- In TS equat y g ! usst

tions that realizeV,,, and calculate the correlatiorts, for integrals for whichh # 1, contribute.

this subset. The resulting values for ttyg are special in two
respects. First, the value af, corresponding to them will
occur forx=oc0 since the minimum ok is degenerated for
a<a.. Second, exactly these values @f will occur in a Of particular interest is the case in which only the values
MLN with that Boolean function between hidden layer andof c; andck are prescribed, i.euy,=uz=---=ux_1=0in

IV. GENERAL RESULTS FOR PRESCRIBED HIGHEST
AND LOWEST CORRELATION
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TABLE I. Correlation coefficients and storage capacity for an ensembl¢ pérceptrons in the pure
cases characterized by= (see text

“ €y (x==) Ck (x==) Ve, (x=)
I u<l 1 1 K/2
I =1 1-2K+12XK-DK  —1+1/XK-D
H K/2—K[° . Dtt2[H(t)]< ¢
M u>1 1-2/K -1

K2—KSZDtE2((H(—t) K 1=[H(1) 1% D

the cost function4). It describes the interpolation between

individual perceptrons gx=0) and the parity machine

(ug— =), which is known to saturate the asymptotic up-

per bounda.=InK/In2 for the storage capacity for larde

[4]. This special case is also sufficient to discuss the relation

with the most important tree-structured MLN f&r=2 and

K=3. Moreover, the necessary algebra simplifies somewhat.
Let us first note that the correlation coefficiemts and As usual we have used the abbreviatibh(x)= [;Dt.

ck are not independent of each other. It is hence not possiblg; (|«|,x,L) and f,(Ju|,x,L) (with L=0,1) are integrals

to prescribe arbitrary values for them. According to theirover sums of products of error functions explicitly given in

e72x
2

11
K_%ZE_H(Z&)_Z&\/—

1
ol fa(lul D+ fa(|u D], (19

definition (2),(3) we always haves;,cx e (—1,+1). More-
over, it is sufficient to consider positive values f only,
which is guaranteed by the structure of the cost functin
Finally the relation

ck=Kec;—(K—1) (149

Appendix B. The final analysis of these equations has to be
done numerically.

As discussed in the last section it is of particular interest
to find the correlationg; and cy for which x=« at «..
From Eqs(17)—(19) and(B8)—(B11) we find the results that
are listed in Table I.

Note that all three pairsc(L,cK)l(X:w) lie on the line
given by Eq.(14), in fact (I) and(lll) are the end points of

must hold. It is a consequence of the obvious observatiog,is |ine.

that the difference between andcy is maximal if for every

It is at first sight surprising that the parity machine does

pattern at most one perceptron has negative output, whichot occur in Table I. However, from the structure of the cost

corresponds to the equality sign in Eq4).
To perform the detailed analysis we dengtg simply by
u to get

EWJy, ... )= [—; T;m];[ . (19
Accordingly Eq.(11) simplifies to
11 ’
F(x,tx)= min % (M=t 2= 2 sgriny)
Nveeor Ak k k
+usgnN Ay - ')\K)}- (16)

function Eq.(15) it is clear that the internal representations
of the parity function realizeV,,, only in the limit

u— +oo. For finite |u| the first term in Eq(15) suppresses
configurations with more than one negative output and gives
rise to cas€l) or (lll).

V. K=2

The simplest case to apply the above concepts is provided
by two perceptrons witiN/2 inputs each corresponding to
K=2. The only relevant correlations at¢ andc, [see Egs.

(2) and (3)]. The relative importance of these in the cost
function (15) is regulated byu.

Solving Eq.(19) numerically for the cas& =2 we find
C1(ac,pu) andc,(ac, ) from Egs.(17) and(18) and invert-
ing these dependencies we arriveagfc,,C,).

In Fig. 1 (left) the dependence ot on c, for several

In Appendix B the following expressions for the correlation values ofc, is shown. Solutions exist only inside the shaded

coefficientsc, andcy are derived:
c1=1-2H(2VX)—[f1(|x]. %0~ fo(|u].x,0)], (17)

ck=2[1/2—-H(2/x) ¥

—Ksgriw)[fa(|ul %00+ 2|l x,0]  (18)

Moreover the saddlepoint equation fixingcan be trans-
formed into

areas whose boundaries correspond Q=0 and
c,=2c;—1, respectively[cf. Eq. (14)]. The maxima of
ac(Cy) at constantc; occur for the uncorrelated system
pu=0, implying czch as expected since an additional con-
straint onc, can only reducey.. The values ofac(cl,ci) at
these maxima are consistent with the results of Gardner and
Derrida for the minimal fraction of error§gp=(1—c4)/2
[18].

As a complement, the dependenegc,) for fixed c, is
shown in the right part of Fig. 1. Lines far, and —c, start
at the same point foc;=0. This corresponds tg= oo,
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30 30

25 r 25

20 20

-1.0 -0.5 0.0 0.5 1.0

FIG. 1. Storage capacity.(c,,C,) for K=2 correlated perceptrons. Lett,(c,) for c;=0, 0.4, 0.5, and 0.6. Outside the shaded areas
no solutions exist; dark shade correspondsute 1 and light shade tqw<1. The dashed-dotted lingu=0) gives the location of the
maxima. The symbols denote the pure cases corresponding to the MLN summarized in Table llaRightfor (from bottom to top:
c,=1,0.8, 0.7, and 0.%5dasheg@l andc,=—0.8,—0.7, and— 0.5 (full). The lines end at the thin line given lmp=2c,—1. The symbol
corresponds to the parity machine.

where the value ot; has negligible influence on the cost rows at the lines of constant point to smaller values of
function (15). With increasingc; the value ofa. always «a.. The above discussed hidden unit machines are again
decreases because additional constraints are to be satisfiedarked by the symbols of Table II. All other points can be
These new constraints give rise .9>0 and are hence interpreted as these machines above their storage capacity.
harder to satisfy for negative values of. Finally all lines  Note that the same point could be associated with different
end at the thin line given bg,=2c;—1. machines beyond saturation since by prescribing the correla-

The pure cases fd{ =2 defined byx== at a, are indi-  tions appropriately we can induce continuous transitions be-
cated by symbols in Fig. 1. They correspond to two-layertween different machines.
networks with two hidden units and fixed Boolean functions
between hidden layer and output and are summarized in VI K=3
Table Il.

In our analysis the AND machine denotes the situation in A similar analysis can be performed fé&r=3. As dis-
which the two perceptrons have to gigenultaneouslythe  cussed in Sec. IV we sgi,=0 and denotews simply by
correct outputr”’= +1 for all patterns. The storage capacity x. Similar to the last section we can then determine
is hence given by the Gardner result, ie.=1 since each a¢(cy,c3) from a numerical analysis of Eq&l7) and(18).
perceptron hadl/2 couplings only. Note that the AND ma- Figure 3(left) shows the dependence of the critical stor-
chine investigated ifil2] has random outputs”==*1 and age capacityr. on c3 for fixed values ofc;. The dependen-
therefore the value for, is different. The XOR function
defines theK=2 parity machine for which the replica-
symmetrica, was first obtained if3,4]. The result for the
OR machine is new; again it refers to the situation where
random inputs all have to be mapped®f= + 1. Finally let
us note that there is another rather trivial pure case given by
c1=C,=0 with ;= corresponding to the Boolean func-
tion that gives output-1 on any input. c

The results obtained faK =2 are summarized in Fig. 2, 2
which shows the region of allowed values in thec, plane
together with lines of constant. and constanj.. The ar-

TABLE II. Patterns of correlations forK=2 perceptrons
equivalent to two-layer networks with fixed Boolean function be-
tween hidden units and output. 106 . ! .
0.00 0.25 0.50 0.75 1.00
Symbol in C,

Fig. 1 (o Cy a. (x=») u  Boolean function
FIG. 2. Contour map o#(c,,c,) andu(c,c,) for K=2 cor-

Triangle 1 1 1 <1 AND related perceptrons. Full lines correspond to
Square  1/4 -1/2 1101 =1 OR a;=100, 11.0% PR, 5.50= R (from left to right, dashed
Circle 0 -1 5.50 >1 XOR linestou=-10, —2, —1, 0, 0.99, 1.01, 2, and 1@rom top to

bottom). Symbols denote the same MLN as in Table II.
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\
\
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15
o, o,
10
5
-~ \a.\_\_\._%
0.0 0.2 0.4 0.6 0.8 1.0
o]

FIG. 3. Storage capacity.(c,,c3) for K=3 correlated perceptrons. Lett.(c3) for c,=0, 1/3, 5/12 and 3/5. Outside the shaded areas
no solutions exist, dark shade correspondg tel, light shade tqu<1. The dashed-dotted ling.&0) gives the location of the maxima.
The symbols denote the pure cases corresponding to the MLN summarized in Table Ill. Righf) for (from bottom to top:
c3;=1, 0.9, and 0.8dasheglandc;= —1,—0.9 and— 0.5 (full). The lines end at the thin line given ley=3c,;—2. The symbol corresponds
to the machine giving overall output 1 only if exactly one hidden unit is-1.

cies are rather similar to the calke=2 shown in the left part
of Fig. 1. Again solutionsc;(«a,C3) exist only in shaded
areas. The maxima of the.(c3) curves lie on the dash-
dotted line corresponding to
(n=0). They are hence characterized by:cf and are

those of Table lll. Large values af; imply a strong corre-
lation of every perceptron with the common output and give
therefore smalk, and a narrow interval of consistent values

independent perceptronsf c;. Relaxing the constraint oo, allows a more efficient

“division of labor” between the perceptrons and results in a

again consistent with the Gardner-Derrida results on théroader spectrum of; values and enhanced storage capac-
minimal fraction of errors for perceptrons above saturationity. Accordingly the largest values ok, are possible for

[18].

As a complement, the dependenegc,) for fixed values
of ¢ is shown in the right part of Fig. 3. Again, similar to
the caseK=2, we find thata, decreases with increasing
1. In particular, the lines focz=+1 show how the storage
capacity decreases from the value of e 3 parity ma-
chine atc;=0 if additional constraints showing up in

¢1=0. Thenea, only depends orc; and starting from the
value 10.37 for the parity machine af==*1 it increases
without bound with decreasings|.

An important aspect of the cas€=3 is that there is a
correlation coefficientc,, that was not presribetsince we
put w,=0). Itis nevertheless of interest to know the value of
c, that corresponds to different choices @f and c;. The

c,>0 are included. All lines end at the thin line given by easiest way to obtaiey, is via a maximum entropy argument.

C3=3C:|__2.

This is sketched in Appendix C. The result is

The symbols in Fig. 3 refer again to pure cases with

x=o at a. corresponding to the MLN summarized in Table
lll. In addition to the AND and parity machine we now have
the committe machine and a machine with the Boolean func-

tion for which the output ist- 1 if exactly onehidden unit is
-1.

-+

1 N1
C2=—75 2 +ci+c4Ca. (20

We can again summarize the results in a contour plott is interesting to note that for the values=5/12 and

showing lines of constant, and u in the c;-c5 plane(Fig.
4). Only combinations of; andc, that belong to the shaded
areas are possible: the light shade correspongs<ta, dark

c3= — 3/4 characteristic for the committee machine this for-
mula givesc,= — 1/6, which is in fact the correct resylt0].
The committee function fok =3 hence does not imply con-

shade tou>1. The arrows at the dashed lines of constanistraints onc, and is already uniquely characterized by the
M point again into regions of lowew.; the symbols are values ofc; andcs.

TABLE Ill. Patterns of correlations foK=3 perceptrons equivalent to two-layer networks with fixed
Boolean function between hidden units and output.

Symbol in Fig. 3 Cq C3 a. (X=») M Boolean function
Triangle 1 1 2/3 u<l AND

Star 5/12 —3/4 4.02 pu=1 Committee
Diamond 1/3 -1 3.669 u>1 (—++),(+=+),(++-)
Circle 0 +1 10.37 pu==tw Parity
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influence of higher correlations that are known to be impor-
tant for the storage abilities was also taken into account. The
results show which correlations are difficult to implement
and are therefore important for the determination of the stor-
age capacity and which are easy and therefore not very re-
strictive. A detailed analysis was carried out #6=2 and
K=3.

The technique used is a generalization of the canonical
phase space analysis introduced by Gardner and Derrida. The
results were obtained within the replica-symmetric ansatz.
They should hence be seen as a mere first orientation since it
its well known that replica-symmetry breakifgBSB) is cru-
cial for both the description of perceptrons above saturation
[22] and the storage abilities of MLI—6]. An investiga-
tion of the problem within RSB though highly desirable
seems technically rather involved. Also the extension of the
analysis to asymptotic behavior féd¢—< would be very

to interesting and would hopefully shed some light on the still
=100, 10.37a"R, 4.02=aS™ and 2 (from left to right, controversial problem of the storage capacity of MLN in this

dashed lines tqu=—10, —2,—1,0, 0.99, 1.01, 2, and 1Grom  lMit.
top to bottom. Symbols denote the same MLN as in Tallé).

FIG. 4. Contour map of(c,,c3) andu(cq,c3) for K=3 cor-
related perceptrons. Full lines correspond
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results for single perceptrons above their storage capacityithin replica symmetry. To this end we employ a generali-
and those for several MLN with tree structure dfdidden  zation of the formalism of Griniasty and Gutfreuft].

units and fixed Boolean function between hidden layer and To perform the average over the random patterns we use
output. Similar ideas were pursued [ihl] and [13] where  the replica trick

approximate expressions for the storage capacity of a parity

machine and committee machine, respectively, were ob- 1 N (21
tained from the results of Gardner and Derrida on the mini- | (42: - K.B) =~ m((an})— N B_erLo n

mal fraction of errors of perceptrons beyond saturation and (A1)
in [21] where analogies between a committee machine and

noisy perceptrons were investigated. In the present paper thevolving the partitition functionz:

APPENDIX A

3 dJ o0 a v v
Z:f I = 5(JE—N/K>f AN F OO — I KIN) e VO 40

-k \27e —o kv

VN, ... A= —Ek sgr(?xﬁ)wz% SOMARA[) + - - -+ ugSGNNT - - - ). (A2)

Introducing integral representations for thdunctions and performing the average over the patterns we find

N dED

e} 0 oo N
m\\ — ab ab |
«=" fwag;k da J, H dF 27K 7001_[ 47K eXF{K

o a<b;k a;k

1 ab Fa
32 T(QAY +Go(FYEY) | +aNGy(Qy - Qu) |,

(A3)

where
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G,(F2,ED) ———Z [n+tr(InAy)] (A4)

and

f 1 dxkf Il - )nexr{ > Y —2 YQWKTB VML M| (AS)

Gy(Qq--

Hereh,=(\g, ..., \p) andy=(yg, ..., yi) and we have used the matrio®g and A, :

(1 q® o iEZ  —iFgP 6
Q= g 1 )0 TR\ -iFx» ER )
where as usuaﬁﬁb describes the overlap between two replieals in the coupling space of perceptrén
g2P=J2IPK/N. (A7)
The saddle point foEZ andF2® is given byQ, '=A,, resulting in
* ab N
(2= I dogexp 5> In(deQy)+aNGy(Qs--- Q) |- (A8)
—o a<b;k 2K k

To evaluate the remaining saddle point integral we use the replica-symmetric qﬁ%tqk for all a#b. Moreover, we
expect permutation symmetry between the different perceptrons imphapgq for all k=1, --,K. Then
InN[deQ]=n[In(1-g)+ad/(1—q)] and forG4(qy,..,qx) it follows that

_ 2
Gl(q>=ln{ I1 dx f —exp( 2 ik anzk (Yi)?- gEk (E yi‘) > vw,...,xﬁ))

Bk
(A= tva)” tk\/—)2 )

=n DtInJ p( VN, ... \x)|. A9

In order to calculate the functiog(ac,us, - .. ux) [EQ. (7)] we have to consider theaturation limit 8—oo. It is

convenient then to use the rescaled saddle point variablg(1—q) instead ofg. In this way we obtain

g(ac, pz, - .-, ) = = min| > J HDth(xtl th,..., tK)} (A10)

o ( (A= t)? )
F(X,t1,tp, ... )= min | > —=——+V(\q, ... A\ |, (A11)
ML a Kk 2Xx

which coincides with Eq(10). The saddle point equatidid3) determiningx follows by explicit differentiation of Eq(A10)
with respect tax.

APPENDIX B

In this Appendix we sketch the main steps of the derivation of the saddle point eqUER)aend of the free energ§A10)
for the case where only; andcy are prescribed. We also give the explicit expressiongf@andcy as a function ofx, and

The calculation ofy as given by Eqs(A10) and (16) requires minimization of

K K

(N t)?
F(Xtyt, ... )= min {E > sorov) + ] 1 sgring . (B1)
Ak =

MAg, ., k=1 2X k=1
From Eq.(12) we have

t) if A=t
Sgr()\g)=[s_gr( DU LI ¥ k. (B82)

sgn(ty) otherwise.
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Equation(B1) then becomes

K
F(X,ty,t, . te)= usw’)—gl sgrit)+ >

VA =0*

t2
2—'+2 sgn; ” (B3)
J

HereS()\O)=HE=1sgn(>\E)=(—l)mHE=1sgn(tk) werem counts aII)\EEO. The last sum in EqB3) has only contributions
from those\ with A?=0".

To minimize F for given t=t,, ...ty we have to find which of the 2 configurations{\9, ... A2} , AD={0"t,},
minimizes Eq.(B3). A suitable procedure to do this is as follows. We first make the last term ifB3j1as small as possible.
That is for allt; with tje (- 2./x,0) we choose for a first try\J 0*. We denote the resulting value f&A°) by S*.
[S*=(—-1)" wheren |s the number of alk,<—2x.] If ©S*(t)<0, the optimal configuration has already been found
because the first summand is at its miminum as well. If, on the other hesidt)>0 there is competition between the first
and the last terms in EgB3). One may then change the sign$(f)\°) in order to lowerF(x,t,t,, ... tk) by 2|u| by either
setting a single.)=0~ althought, ¢ (—2/x,0) or setting a singla’=t, for onet, e (—2x,0). The corresponding changes
in F are Zw(t) —|u|], where

t24x— 1 if te(—o,—2yX)
w(t)={ —t&4ax+ 1 if te(—2x,0) (B4)
t?/4x+ 1 if te(0>).

In the saddle point equatidid3) only regions in the integral contribute for whitz\r?#tj for at least ong. Formalizing the
above consideration we find

1 . . K K
=[] o -DtK|kZl 2-101(t) +KO(uS)0(ul ~w(t)F (-1 [T @ w(tg—w(ty) (. (B5)

= B6
0 otherwise. (B9

1 if te(—2v%,0)
1
The first term of Eq(B5) stems from our first guess minimizing the last term of EBB) only. The various® functions
in the term that contributes only fartS* >0 implement the different cases discussed in context with([E4). The integration
variables can be defined such thatt,<- .- <tx always with no restriction of generality.

The integration ovet,, . .. tx yields a product of sums of two error functions. Finally the saddle point equation reads
1 1 e 1
Ko~ 5—H(2&>—2&E+ STl XD+ o ul X, D], (B7)

J‘fzv‘x(lf
VX

falul<ixL=[-1]"] Dtyt3 ((H(ty) + H(t) 17 T sgnu[H(t) —Hy(t) 17, (B8)

(Tul-1)
fi(lu[>1xL)= f Dtytf ([H(ty) +Hp(t) 1% +sgnu[H(ty) —Hp(t)]¢ 1)

0
+[—1]Lf_2s tat i ([H(t) + Hin(t) 1€ 4 sgnulH(t) —Him(t) 1D 1, (B9)

where we introduced the abbreviaticbmp(tl)zH(\/8x+t21), Hu(t) =H(V]8x—t2]), and H,(t;)=H(—\|8x—tZ]). As
usualH(t) = [{Dt. Similarly

=

2x
falu|<1x, L)—f KT Dtyt3 ((Hp(t) +H(—t) ¢ = sgmu[Hpy (t) —H(—t) ], (B10)
VX wul)

f2<|ul>1,x,L>=H_22‘ DL (i (1) + H(—t) 1< = Sgnl Ho (1) — H(— ) 1<)

—2V2x
+J’2\w LY Ho(ty) + H(—t) ] = sgnu[Hu(ty) — H(—t1) 1<) N
B11l
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A common feature of EqgB8)—(B11) is that in the binomial expression those terms cancel, which correspond to regions with

uS*<0.
The calculation ofy proceeds along similar lines:

g/aczf ...f Dtl'.DtK{
[ oo

K
xklj2 ®(w<tk>—w<t1>)] :

K

uS* =X sgnit)+2
k=1

We find

9/ = —2KE(2/x) + 2% uEX(2/x) + K{F 1| |, %,0) = F o ] ,%,0) = | | [ F 1| e, %,0) + F o | ], x,0) 1}

Performing the derivative o)/« with respect tou one
realizes that there is no contribution from thedependence
of the integration limits in Eqs(B8)—(B11). Hence the ex-
pression (B13) for g/a. is already of the form
g/ a.=—Kcq+ uck and we arrive at Eqg17) and (18) for
the correlation coefficients; andcy .

APPENDIX C

To determinec, for given values o, andc; we look for
the probability distributionP(7,75,73) that for the given

values ofc, andc; realizes the maximal entropy. Because of
the permutation symmetry between the perceptrons we have

only to determine the probabilitieg, of output configura-
tions with k negative outputs where=0, ... ,3.Hence we
have to maximize

D. MALZAHN, A. ENGEL, AND I. KANTER

>

\M?:o

J

K
pS =23, (1) +2KO(uS)O (| ~W(t)) ~ uS*+(~1)* Wsgrity)]

(B12)

(B13)

S=—polnpo—3p1Inp1—3p2Inp, — pslnps+No(Po+3p;
+3p2+pP3—1)+ N (PotP1—P2—P3—C1)
+N3(Po—3p1+3p2—P3—Cs),

where the\, are the Lagrange multipliers incorporating the
constraints. Performing the derivatives with respect to the
pk Yields

(CD

PoP3=P1P>- (C2
Using the constraints to solve for tipg gives
1 1,
sz_ii Z+C1+C1C3, (CS)

where only the upper sign gives rise to positive values for all
Pk -
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